نوع مقاله : مقاله پژوهشی (کمی)

نویسندگان

1 1گروه مدیریت، موسسه آموزش عالی آیندگان، تنکابن، ایران

2 مدیریت، موسسه آموزش عالی آیندگان، تنکابن، ایران

چکیده

در این مقاله چگونگی استفاده از متامدل شبکه عصبی مصنوعی برای تحلیل حساسیت مدل مقدار اقتصادی سفارش در حالت اثرات تعاملی دو فاکتوری ارایه و نشان داده شده است که استفاده از این متامدل برای تحلیل حساسیت مقدار اقتصادی سفارش در مقایسه با روش فعلی (یک فاکتور در هر بار) مناسب‌تر است. برای این منظور، از یک شبکه عصبی پیشرو پس‌‌انتشار با یک لایه مخفی، توابع محرک سیگمویید در لایه مخفی، فاکتورهای موثر بر EOQ به‌عنوان ورودی و مقدار اقتصادی سفارش به‌عنوان خروجی مدل استفاده شده است. معیارهای حساسیت بر اساس وزن‌های اتصال تعریف شده و رویه متدولوژی در یک مثال عددی نشان داده شده است. باظهور نظام‌های هوشمند ، پردازش داده‌ها و مدل‌های مرتبط با آن‌ها از قبیل شبکه‌های عصبی مصنوعی، الگوریتم ژنتیک ، منطق فازی و نظایرآن‌ها که با الهام از گوشه‌ای از طبیعت طراحی و مدل‌سازی شده‌اند، پیشرفت مهمی در تجزیه‌وتحلیل داده‌ها صورت گرفته است.یکی از اصلی‌ترین ویژگی‌های شبکه عصبی مصنوعی، که از ساختار و عملکرد شبکه‌های عصبی طبیعی الهام گرفته است، پردازش موازی اطلاعات ورودی توسط واحد‌های پردازش نرونی است.

کلیدواژه‌ها

عنوان مقاله [English]

Sensitivity analysis of the order economic value model in the case of two-factor interactive effects using artificial neural network

نویسندگان [English]

  • ali sorourkhah 1
  • zahra jorbonian 2

1 1 Department of Management, Ayendang Institute of Higher Education, Tonkabon, Iran

2 Management, Ayendag Institute of Higher Education, Tonkabon, Iran

چکیده [English]

In this article, how to use the artificial neural network metamodel to analyze the sensitivity of the order economic value model in the case of two-factor interactive effects is presented and it is shown that the use of this metamodel for the sensitivity analysis of the economic value of the order compared to the current method (one factor in each load) is more suitable. For this purpose, a back-propagation forward neural network with a hidden layer, sigmoid driving functions in the hidden layer, factors affecting EOQ as input and economic order value as output of the model have been used. The sensitivity criteria are defined based on connection weights and the methodology procedure is shown in a numerical example. With the emergence of intelligent systems, data processing and models related to them such as artificial neural networks, genetic algorithm, fuzzy logic and the like, which are designed and modeled with inspiration from a corner of nature, an important progress has been made in data analysis. One of the main features of the network Artificial neural networks, inspired by the structure and function of natural neural networks, are parallel processing of input information by neural processing units.

کلیدواژه‌ها [English]

  • Economic value of order
  • sensitivity analysis
  • artificial neural network
  • production cost reduction